Simulation of the Transient Behavior of Gels Based on an Analogy Between Diffusion and Heat Transfer

The transient behaviors of the swelling and deswelling of gels involve concurrent mechanical deformation and solvent diffusion and exhibit a fascinating phenomenon. In this paper, a simple numerical tool is developed by using an analogy between diffusion and heat transfer when large deformation presents for gels. Using this analogy, a finite element method is developed in the framework of a commercial finite element package ABAQUS via two material-specific user subroutines to describe the mechanical and mass diffusion behaviors of gels. The present method is not limited to any specific materials; therefore, this method can be extended to other materials that featured with coupled deformation and diffusion. This method is expected to be able to serve as a useful numerical tool to study related materials and problems due to its simplicity.

[DOI: 10.1115/1.4007789]
This particular heat transfer behavior can be modeled in ABAQUS via its user-defined heat transfer subroutine UMATHT, in which the internal heat energy U and the heat flux f_i are to be defined based on Eq. (3). The normalized chemical potential μ is analogous to the temperature T. In addition, the gradients $\partial f_i/\partial T$, with respect to temperature T and temperature gradient $\partial^2 f_i/\partial T^2$ (or equivalently chemical potential μ and its gradient $\partial \mu/\partial T$) are also needed as these terms will contribute to the stiffness matrix of this user-defined heat transfer problem. Specifically, one needs to define $\partial f_i/\partial \mu = 0$ and $\partial f_i/\partial T (\partial \mu/\partial T) = -(\text{det}(\mathbf{F}) - 1)/\text{det}(\mathbf{F})$.

The mechanical constitutive relation of gels is implemented in ABAQUS via its user-defined hyperelastic material UHYPER [17] by prescribing the free energy density. One choice of the free energy density is the Flory–Huggins model [22, 23], where the energy density is given by [12]

$$W(F) = W(F) = \frac{1}{2} N \varphi F_{\text{K}} F_{\text{K}} - 3 - 2 \log(\text{det}(F))$$

Here, two dimensionless parameters are involved, namely, $N\varphi$ for shear modulus of the dry polymer and φ for enthalpy of mixing. Here $\varphi = 10^{-28} m^3$ is a representative value of the volume per solvent molecule. Thus the shear modulus of the dry polymer NkT is related to the normalized shear modulus by $NkT = 4 \times 10^7 N\varphi (Pa)$. The nominal chemical potential μ in Eq. (4) is a parameter instead of field variable as F.

Thus, the transient analysis of the gels with coupled mass diffusion and large deformation is realized through coupled heat transfer and deformation by defining specific heat transfer behavior (UMATHT) and mechanical constitutive relations (UHYPER). Since this implementation does not involve element development (e.g., user-defined element [19]), it can be more straightforwardly utilized. It should be emphasized here that this problem is nonlinear, though the diffusion part is linear. Iterations are conducted to reach convergent results.

There is a distinct feature of the gel simulation: The deformation is extremely sensitive to chemical potential. A slight variation of chemical potential leads to significant deformation especially for short-time behavior once a dry polymer (with $\mu = -\infty$) contacts with a solvent (with $\mu = 0$). The deformation on the other way affects chemical potential. Therefore, the iteration between deformation and diffusion fluctuates severely for short-time behavior, and this fluctuation oftentimes results in divergent results, which makes this problem numerically difficult. Here we should emphasize that this severe fluctuation is not necessarily physical but a result of numerical iteration. In order to mitigate this fluctuation, a damping-like method is introduced, i.e., the term $\partial f_i/\partial \mu (\partial \mu/\partial T)$ is multiplied by a scaling factor $\chi > 1$. The scaling factor contributes to the stiffness matrix but not the residual vector (e.g., $f_i = 1/\mu (\partial U/\partial t)$) of this nonlinear problem. Since the convergence of nonlinear problems is governed by the residual vector, this scaling factor and the resulted approximated stiffness matrix do not affect the accuracy of the results. In fact, this method of changing stiffness in a nonlinear problem has been applied in many different scenarios. One example is that the modified Newton’s method uses an approximated stiffness matrix to save computational cost. Another example is that in ABAQUS’ coupled thermal stress analysis, the off diagonal components of the stiffness matrix are ignored without affecting the accuracy of the solution [24]. A similar scenario can also be found in coupled poromechanics problems [25] and the stabilization factor is influenced by time step and element size [26] as well.

The method of using scaling factor χ is verified by studying a free swelling of a cubic gel as illustrated in Fig. 1(a), in which a dry cubic gel is set to contact with solvent from its outside surfaces and thus swells without constraints. Due to symmetry, $1/8$ of this cube with size $L \times L \times L$ is used in the modeling. Equation (4) is used to describe the mechanical constitutive relation of the gel with $N\varphi = 0.001$ and $\chi = 0.2$. Figure 1(b) compares the normalized displacement w/L in the z-direction for three points (A, B, and C) versus normalized time Dt/L^2 for both scaling factors $\chi = 1$ and $\chi = 100$. The inset shows the max principal strain contour at $Dt/L^2 = 160$.

Fig. 1 (a) Schematic of a cubic gel swelling under no constraint. Three points A, B, and C are marked. (b) Normalized vertical displacements w/L of three characteristic points (A, B, and C) versus normalized time Dt/L^2 for both scaling factors $\chi = 1$ and $\chi = 100$. The inset shows the maximum principal strain contour at $Dt/L^2 = 160$.
The migration of solvent in and out of the network of gels endows the gel viscoelastic behavior. The creep (i.e., indentation with a constant force) and relaxation phenomena (i.e., indentation with a fixed depth) are observed. Specifically for a relaxation indentation experiment, the gel is suddenly indented by a fixed indentation depth. At short-time limit \((t = 0)\) (i.e., right after the gel is indented by a fixed depth), the solvent has no time to migrate out of the gel, and the gel behaves as an incompressible material. The indentation force is denoted by \(F(0)\). As the solvent migrates out of the gel network, the gel becomes a compressible material, and thus the applied indentation force gradually relaxes and reaches another steady state \(F(\infty)\) at the long-time limit. \(F(0)\) and \(F(\infty)\) are related to two material properties of gels, namely shear modulus and Poisson’s ratio, for given indentation geometries [31–33]. The evolution of \(F(t)\) provides a way to determine the diffusivity of a solvent. In simulation, obtaining \(F(0)\) and \(F(\infty)\) is a static problem. We recently have studied the large deformation effect on this regard [33]. It becomes a transient problem to determine \(F(t)\), which is the focus of this example.

The present finite element method is used to simulate the relaxation experiment. A rigid spherical indenter with radius \(R = 3\) mm indents \(h = 1\) mm on a fully swollen gel modeled by 12,395 C3D8T elements (Fig. 3(a)). Two sets of material parameters are used, namely, \(Nv = 0.2\), \(\chi = 0.7\), and \(Nv = 0.07\), \(\chi = 0.8\), with both providing an equilibrium swelling ratio \(\lambda_{eq} = 1.2\) by minimizing the free energy density \(W(F)\), Eq. (4)). Diffusivity of solvent is taken as \(D = 8 \times 10^{-4}\) mm\(^2\)/s. Figure 3(b) shows the evolution of indentation force \(F(t)\) with time. The indentation force decays as expected. As a first approximation, the evolution
of \(F(t) \) can be expressed by \(F(t) = F(0) + [F(\infty) - F(0)] \left[1 - \exp \left(-\left(\frac{t}{\tau_{\text{ind}}}
ight)\right) \right] \) and is also shown in Fig. 3(b), where \(\tau_{\text{ind}} \) is the relaxation time of the gel under indentation. This relaxation time is found to be approximately 10,000 s for these two gels. As discussed before, this relaxation is due to the diffusion of the solvent inside the gel. Upon indentation, the solvent inside the gel diffuses out of the gel to reach the equilibrium with the external solvent. The characteristic diffusion length is the contour length \(L \) (Fig. 3(a)). In this simulation, the characteristic diffusion time is given by \(\tau_{\text{diff}} = \left(\frac{L^2}{D} \right) = 8,000 \text{s} \), which is on the same order of \(\tau_{\text{ind}} \). When the history of \(F(t) \) is obtained from experiments, the simulation can be used to determine the diffusivity.

The second example is related to a recent application of gels in the oilfield industry, primarily for zonal isolation. The gel, or as they are more often named swellable elastomers, are used for zonal isolation. A string of self-reactive swellable elastomer is placed inside a set of complex tube assemblies. Either water-reactive or oil-reactive swellable elastomer are available depending on the chemical composition of the elastomer. In the following, we study a water-reactive elastomer where the elastomer is swellable when exposed to water but not oil so that it remains at the dry state and allows the oil to freely flow. When the water presents, which is undesirable since it is very costly to separate oil and water, the elastomer swells to block the oil flow.

In this application, the transient behavior is very important as it determines the history of pressure \(p(t) \) built on the pipeline as the elastomer swells. Figure 4(a) illustrates our model where the elastomer surrounding a rigid core is inside a pipe with modulus \(E = 200 \text{ GPa} \) and Poisson’s ratio \(\nu = 0.25 \). In the following simulation, the radii of the gel and pipe are 90 mm and 100 mm, respectively. Figure 4(b) shows two contour plots of \(p(t) \) as elastomer swells. The material parameters used in Fig. 4(b) are \(N_v = 0.1 \), \(\chi = 0.4253 \), and \(D = 8 \times 10^{-4} \text{ m}^2/\text{s} \). It is found that the maximum pressure \(p(t) \) applied on the pipe is on the same order of the shear modulus \(NK \) (= 4 MPa) of the elastomer, which is unique for soft matters with large swelling ratios. To study the effect of material parameters on the history of pressure \(p(t) \), Fig. 4(c) plots the average \(p(t) \) on the pipe versus time for different material parameters. It is found that the pressure \(p(t) \) increases with the shear modulus (or equivalently, the normalized shear modulus \(N_v \)) of the elastomer in an approximate linear fashion for the same equilibrium swelling ratio. The approximated linear fashion can be understood from the dimensional analysis that the shear modulus is the only dimension towards the pressure \(p(t) \). For the same shear modulus, the elastomer with a larger equilibrium swelling ratio provides higher stress than that with a smaller equilibrium swelling ratio. Overall, it is found that the pressure \(p(t) \) mainly depends on the shear modulus of the elastomer but not the equilibrium swelling ratio. Therefore, this result suggests choosing an elastomer with a larger modulus and also a smaller \(\chi \) to reach a larger equilibrium swelling ratio. It should be noticed here that the working environment in the oilfield is much harsher (such as very high pressure) so that the example shown here only attempts to show the basic physics.

In summary, this paper establishes an analogy between diffusion and heat transfer when large deformation presents for gels. Using this analogy, a finite element method is developed in the framework of a commercial finite element package ABAQUS via two material-specific user subroutines to describe the mechanical and mass diffusion behaviors of gels. This method is then used to study two transient problems of gels, namely indentation and swellable elastomers. Since this method does not involve any element development, but limits on the material level, many built-in capabilities in ABAQUS can be straightforwardly used, such as, the contact problem that has been used in the indentation and swellable elastomer problems. More importantly, the discussion in this paper is not limited to any specific materials; therefore, this method can be extended to other materials that featured with coupled deformation and diffusion, such as, visco-elastic material coupled with diffusion. It is hoped that this method is able to serve as a useful numerical tool to study related materials and problems due to its simplicity.

Acknowledgment

We appreciate the High Performance Computing Initiative (HPCI) at the Arizona State University. YA acknowledges the financial support from the China Scholarship Council. HJ acknowledges the American Chemical Society Petroleum Research Fund 52998-ND9.

References

